S06-I129-Routage statique

Module: ETML – Module 129

Auteur: Alexis Gugler

Création: 05.08.2025

Version: 1 du 05.08.2025

Durée estimée de lecture : XX minutes

Table des matières

- 1. Introduction
- 2. Routage statique vs dynamique
- 3. Structure et contenu des tables de routage
- 4. Exercice pratique : implémenter le routage statique sur Packet Tracer

1. Introduction au routage

1.1 Le routage, c'est quoi ?

- Le routage est le processus qui permet de faire transiter des paquets de données d'un réseau à un autre, en choisissant le meilleur chemin possible.
- Il est assuré par des équipements appelés routeurs.
- Sans routage, les communications seraient limitées à un seul réseau local (LAN).

1.2 Pourquoi utilise-t-on du routage?

- Pour permettre la communication entre plusieurs réseaux distincts (ex : entre un réseau d'entreprise et Internet).
- Pour segmenter un réseau en sous-réseaux (subnets) et contrôler le trafic entre eux.
- Pour améliorer la sécurité, la performance et la gestion du réseau.

1.3 Quels sont les types de routage?

- Routage statique : les routes sont configurées manuellement par l'administrateur.
- Routage dynamique : les routes sont apprises automatiquement via des protocoles d'échange entre routeurs.

1.4 Différences entre routage statique et routage dynamique

Routage statique	Routage dynamique
Routes saisies manuellement	Routes apprises automatiquement
Simple à mettre en place	Plus complexe à configurer
Adapté aux petits réseaux	Adapté aux grands réseaux évolutifs
Pas d'adaptation automatique en cas de panne	S'adapte aux changements de topologie
Moins de ressources nécessaires	Utilise plus de ressources (CPU, mémoire, bande passante)

2. Routage statique

- Les routes sont configurées manuellement par l'administrateur.
- Adapté aux petits réseaux ou aux topologies stables.
- Simplicité, contrôle total, mais peu flexible.
- Nécessite une intervention humaine en cas de modification du réseau.
- Avantages : maîtrise, sécurité, pas de trafic de protocoles de routage.
- Inconvénients : risque d'erreur humaine, pas d'adaptation automatique.

3. Routage dynamique

- Les routes sont apprises automatiquement via des protocoles (RIP, OSPF, EIGRP...)
- Adapté aux réseaux de grande taille ou évolutifs.
- Les routeurs échangent des informations pour découvrir et maintenir les routes.
- Avantages : adaptation automatique, gestion simplifiée des grands réseaux.
- **Inconvénients** : complexité, consommation de ressources, risques de boucles si mal configuré.

3.1 RIP

- RIP (Routing Information Protocol) est un protocole de routage dynamique simple.
- Il utilise un algorithme de distance pour déterminer le meilleur chemin.
- Il est basé sur le nombre de sauts (hops) pour évaluer la distance.
- Avantages : facile à configurer, adapté aux petits réseaux.
- Inconvénients : limité à 15 sauts, pas adapté aux grands réseaux

3.2 OSPF

- OSPF (Open Shortest Path First) est un protocole de routage dynamique plus avancé.
- Il utilise un algorithme de lien d'état pour construire une carte du réseau.
- Il est capable de gérer des réseaux de grande taille et complexes.
- **Avantages** : évolutif, rapide à converger, supporte les sous-réseaux de différentes tailles.
- Inconvénients : plus complexe à configurer, nécessite plus de ressources.
- **OSPF** est souvent préféré dans les environnements professionnels pour sa robustesse et sa flexibilité.

3.2.1 Qu'est-ce qu'un algorithme de lien d'état ?

- Un algorithme de lien d'état (link-state) est une méthode utilisée par certains protocoles de routage dynamique (comme OSPF) pour déterminer le meilleur chemin dans un réseau.
- Chaque routeur construit une carte complète de la topologie du réseau en échangeant des informations avec ses voisins.
- Les routeurs calculent ensuite le chemin le plus court vers chaque destination à l'aide de l'algorithme de Dijkstra.

Avantages :

- Convergence rapide (mise à jour rapide en cas de changement de topologie)
- Connaissance globale du réseau
- Meilleure optimisation des routes

3.3 EIGRP

- EIGRP (Enhanced Interior Gateway Routing Protocol) est un protocole de routage dynamique développé par Cisco.
- Il combine les avantages de RIP et OSPF.
- Il utilise un algorithme de distance et de lien d'état.
- Avantages : rapide, évolutif, supporte les réseaux complexes.
- Inconvénients : propriétaire (Cisco), plus complexe à configurer que RIP.
- **EIGRP** est souvent utilisé dans les réseaux Cisco pour sa rapidité et sa capacité à gérer des topologies complexes.

ETML - Module I129 - AGR

4. Structure et contenu des tables de routage

- Une table de routage contient l'ensemble des routes connues par un routeur.
- Chaque entrée indique :
 - Le réseau de destination
 - Le masque de sous-réseau
 - La passerelle (next hop)
 - L'interface de sortie
 - Le type de route (statique, dynamique)
- Exemple de commande pour afficher la table de routage sur Cisco :

Router# show ip route

ETML - Module I129 - AGR

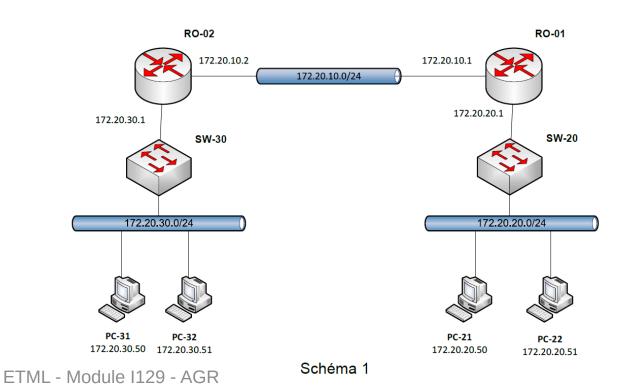
Exemple de résultat de la commande show ip route

```
Router#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter
area
       * - candidate default, U - per-user static route, o - ODR
                                                                   Codes
       P - periodic downloaded static route
Gateway of last resort is not set
                                         Default route
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
                                                                   Routes
        10.0.0.0/8 is directly connected, GigabitEthernet0/0
        10.0.0.1/32 is directly connected, GigabitEthernet0/0
Router#
```

Exemple de résultat de la commande show ip route (suite)

L'affichage de la commande show ip route est organisé en trois sections principales :

- **Codes** : Cette section affiche la signification de chaque code abrégé utilisé dans la table de routage (ex : C = connected, S = static, R = RIP, O = OSPF, etc.). Ici, le code **C** signifie qu'il s'agit d'un réseau directement connecté à une interface du routeur (c'est-à-dire physiquement relié et activé).
- **Default route**: Cette section affiche la route par défaut (si elle existe). Si aucune route ne correspond à la destination d'un paquet, le routeur utilise la route par défaut pour le transmettre. Si aucune route par défaut n'est définie, le paquet est supprimé.


Exemple de résultat de la commande show ip route (suite)

• **Routes** : Toutes les routes connues sont listées ici. Les routes sont regroupées par réseau classful si plusieurs sous-réseaux existent pour un même réseau. Si un seul sous-réseau existe, il est affiché sans regroupement.

Source de l'image et des explications : ComputerNetworkingNotes - The show ip route command explained

4. Exercice pratique : implémenter le routage statique sur Packet Tracer

 Objectif : permettre la communication entre les deux réseaux via des routes statiques.

Sources: Cisco, supports ETML, documentation Packet Tracer https://www.computernetworkingnotes.com/ccna-study-guide/the-show-ip-route-command-explained.html

ETML - Module I129 - AGR